

#### **Federal Aviation Administration**



# Aircraft Catastrophic Failure Prevention Program

William Emmerling (Program Manager) (609) 485-4009

Donald Altobelli (RPD 516 Manager) (609) 485-5940



#### **Uncontained Engine Failure Research**

Sioux City, 1989



Figure 3.--Photo (C. Zellmer) taken while flight 232 was approaching Sioux Gateway Airport. Arrows indicate damage to the right horizontal stabilizer. It is also evident that the No. 2 engine fan cowl door and the tail cone are missing.



#### Uncontained Engine Failure Research Fan Disk, 1989



Figure 18.--No. 2 engine stage 1 fan disk (reconstructed with blades).



### **Uncontained Engine Debris**





### NTSB Findings-SIOUX CITY 1989

- #2 (center) engine uncontained failure
  - Compressor disk material defect in manufacturing
  - Maintenance Inspection of compressor disc
- Uncontained debris from engine damaged all three aircraft hydraulic systems



#### FAA R&D Program Background Aircraft Catastrophic Failure Prevention Program (ACFPP)

- \* ACFPP was created by Congressional direction after the 1989 Sioux City Accident
- Objective-
  - Conduct research that will reduce the risk of catastrophic aircraft accidents and fatalities
- Uncontained engine failure research has been primary focus
  - Mitigation of smaller fragments
- Other research programs concentrated on disc material and inspection improvements



#### **Uncontained Engine Debris Mitigation Program**

- NTSB Recommendations from Sioux City
  - Aircraft Vulnerability- Develop and maintain a database of uncontained engine debris impacting aircraft that would benefit design assessments and safety analysis
  - Failure Mitigation- Update AC-20-128 to mitigate uncontained engine debris from new aircraft certification
    - multiple fragments
    - Non-linear finite element modeling



#### **RPD 516 - Uncontainment Research: Airplane Focus**

Uncontained Engine
Debris Mitigation
Program

- •NTSB A 90-170, revise AC-20-128 (new aircraft designs)
- •NTSB A 90-172, Develop data base of uncontained debris





# <u>Uncontained Engine Debris Damage</u> <u>Assessment Model (UEDDAM)</u> <u>Trajectories</u>



UEDDAM model repeats event multiple times. Varies trajectories and orientation each time.



### AACE University / Industry Partnerships

- 2001 Uncontained Engine Workshop presented results of FAA sponsored research
- In Order to Transition this Technology into service, partnerships were formed between academia, government, and industry using AACE Cooperative Agreements
- \* 100 Percent Cost matching achieved (primarily by industry partners)



# AACE University / Industry Partnerships (2002 start)

- UC Berkeley partnered with Boeing, SRI International and Lawrence Livermore National Laboratory (LLNL)
- Research Area material development and modeling for aircraft barriers (metals, fabrics, composites)







### AACE Technology Transfer Engine Fragment Shielding Project

New 2024–T3 Aluminum failure parameters used to simulate Chinalake Engine Debris Fuselage Penetration Testing Phase 1: Test 22 – Fan blade fragment impact with skin/hat section







## AACE University / Industry Partnerships (cont'd)

#### Simulation



### Barrier Concept





# AACE University / Industry Partnerships (2002 start)

Arizona State University
 partnered with Honeywell ,
 SRI International and NASA Glenn



• Research Area- turbine engine fabric containment modeling





#### LESSONS LEARNED

#### FROM ASU/UCB PROGRAMS

- LS-DYNA can give significantly different results based on Model version and computer platform
- LS-DYNA Model has extensive Quality Control Program for the Automotive Industry
  - No such Quality Control Program existed for the Aircraft Industry
- FY 2003, a Joint FAA / NASA sponsored Workshop established an Aerospace Quality Control Working Group with Industry (Engine / Airframe Manufacturers)



# AACE University / Industry Partnerships (2004 start)

- George Washington University partnered with Livermore Software Technology Corp (LSTC) and Silicon Graphics Inc. (SGI)
- Research Area- LS-DYNA Aerospace Working Group Quality Control Support
- National Crash Analysis Center: www.ncac.gwu.edu







# AACE Technology Transfer Engine Fragment Shielding Project

- \* "Modeling, Analysis and Testing of Metallic and Composite Shielding"
- ❖ AACE Project started in FY-02 (Phase 1)
- \* Team: UC Berkeley (Prof T. Zohdi PI), Boeing, LLNL
  - Purpose- To develop an accurate LS DYNA3D model for aircraft materials and barriers using metals, composites, etc.
  - Accomplishments (Phase 1)(FY-02-04)
    - Completed ballistic testing on aluminum at UCB and LLNL
    - Boeing modeled ballistic tests using Livermore improved material model
  - Status for FY-04 (phase 2)(FY-04-06)
    - Composite testing and modeling is prime focus. Titanium will also be evaluated for thick plates. Ballistic and material testing is currently in progress at UC Berkeley and LLNL.





# **Technology Transfer - Lightweight Ballistic Protection on Commercial Aircraft**

- Team: UCB, (Prof. T. Zohdi PI), Boeing, SRI International
  - *Purpose-* Determine the suitability of Zylon fabric as a barrier against uncontained aircraft engine fragments.
  - Accomplishments (Phase 1)- (FY-02/03)
    - Completed ballistic testing at UCB and SRI to determine material characteristics
    - LS DYNA material model developed by SRI used by Boeing to predict ballistic test results
    - Completed independent Zylon aircraft compatibility material testing at Boeing
    - DOT/FAA/AR-04/40,P1-3 report
  - Status Aircraft Testing (Phase 2)-(FY-04-05)
    - Optimize aircraft attachments designs on small scale ballistic testing at UCB
    - Conduct full-scale fuselage testing at NAWC China Lake with Boeing designed fabric shields. Report in progress.







### AACE Technology Transfer Multi-Layer Fabric Engine Containment Project

- Team: ASU (Prof. S Rajan PI), Honeywell, SRI, NASA-Glenn
  - Purpose- To develop an accurate LS DYNA3D model for engine containment systems
  - Accomplishments (Phase 1) -
    - Completed static testing at ASU and SRI
    - Completed ballistic testing at NASA Glenn as part of NASA Engine Containment Program
    - Completed computational analysis at Honeywell and SRI of ballistic testing with excellent correlation.
    - DOT/FAA/AR-04/40,P1-4 report
  - Status (phase 2)
    - This phase will refine ballistic testing to more represent engine blade-out condition
    - Containment ring testing is currently underway at NASA Glenn











## FAA Certification Support LS-DYNA Modeling Quality Control

- New AACE Project started in FY-05
- Team: George Washington University (GWU) (Dr. S. Kan PI), Livermore Software Technology Corp (LSTC), Silicon Graphics Inc. (SGI)
- \* *Purpose* Provides more accurate modeling of impact and penetration for engine containment and fuselage barrier designs.
  - Provide direct support to the LS-DYNA Aerospace Quality Control Working Group
  - Direct benefit to FAA Certification by establishing modeling standards
  - Provide LS-DYNA training for FAA and industry

